Выберите букву:

Математика - тест

Вы можете купить эту работу on-line прямо сейчас за 150 рублей с помощью системы «Робокасса» или положить работу в корзину
Задание 1
Вопрос 1. Что такое матрица?
1. число;
2. таблица;
3. вектор;
4. функция;
5. нет правильного ответа.
Вопрос 2. Что означают числа в индексе у элементов матрицы?
1. степень;
2. номер строки и столбца;
3. порядок матрицы;
4. числа, на которые нужно последовательно умножить элемент;
5. нет правильного ответа.
Вопрос 3. Сколько свойств определителей Вам известно?
1. 0;
2. 5;
3. 1;
4. 2;
5. 3.
Вопрос 4. Что означает запись размер матрицы (2х4)?
1. матрица нулевая;
2. матрица квадратная;
3. матрица имеет две строки и 4 столбца;
4. определитель матрицы равен 24;
5. нет правильного ответа.
Вопрос 5. Изменится ли определитель второго порядка, если его строки поменять местами с соответствующими столбцами ?
1. нет
2. да
3. да, если один из элементов какой-либо строки равен 0
4. верны ответы 2 и 3
5. нет правильного ответа
Задание 2
Вопрос 1. Что такое минор М11 для матрицы (3х3)?
1. определитель, получающийся, если вычислить определитель нашей матрицы, вычеркнув первую строку и первый столбец;
2. определитель, равный нулю;
3. определитель, получающийся, если вычислить определитель нашей матрицы, вычеркнув вторую строку и третий столбец;
4. определитель, получающийся, если вычислить определитель нашей матрицы, вычеркнув вторую строку и третий столбец, взятый со знаком минус;
5. нет правильного ответа.
Вопрос 2. Как получить М23?
1. умножить матрицу на два;
2. вычислить определитель матрицы, вычеркнув 1-ю строку и первый столбец;
3. нет правильного ответа;
4. вычислить определитель, полученный при вычеркивании второй строки и третьего столбца.
5. все ответы верны
Вопрос 3. Что такое алгебраическое дополнение?
1. Мji;
2. Aiк =(-1)i+к Мiк;
3. определитель матрицы;
4. порядок матрицы;
5. нет правильного ответа.
Вопрос 4. Отметьте формулу разложения определителя 3-го порядка по второй строке?
1. =а11А11 + а12 А12 +а13А13;
2. =а21А21 + а22 А22 +а23А23;
3. =а21А13 + а22 А23 +а31А33;
4. =а11А23 + а12 А13 +а12А33;
5. нет правильного ответа.
Вопрос 5. Можно ли разложить определитель четвертого порядка по первой строке?
1. нет;
2. если 1-й элемент не равен 0;
3. иногда;
4. нет правильного ответа;
5. да.
Задание 3
Вопрос 1. Можно ли сложить матрицы А (2х3) и В (2х3)?
1. нет;
2. да;
3. только, если все элементы матрицы В=1;
4. иногда;
5. нет правильного ответа.
Вопрос 2. Можно ли сложить матрицы А(2х3) и В(3х4)?
1. да;
2. нет;
3. всегда;
4. иногда;
5. нет правильного ответа.
Вопрос 3. Какая матрица называется квадратной?
1. матрица, у которой число строк равно числу столбцов;
2. симметрическая;
3. матрица, у которой число строк больше числа столбцов;
4. матрица, у которой число строк меньше числа столбцов;
5. нет правильного ответа.
Вопрос 4. Можно ли умножить матрицу А(2х2) на число С?
1. нет;
2. да, но только если с=0;
3. да, при этом определитель увеличится в С раз ;
4. нет корректного ответа.
5. да.
Вопрос 5. Можно ли вычесть матрицу А(2х3) из матрицы В(2х3)?
1. нет;
2. всегда;
3. иногда;
4. все ответы верны
5. нет правильного ответа.
Задание 4
Вопрос 1.Что такое нуль – матрица?
1. прямоугольная матрица;
2. матрица, все элементы которой – нули;
3. матрица, на главной диагонали которой находятся нули;
4. единичная матрица;
5. нет правильного ответа.
Вопрос 2. Можно ли перемножить матрицы А(2х2) и В(2х2)?
1. нет;
2. да;
3. только, если все элементы матрицы А=0;
4. иногда;
5. нет правильного ответа.
Вопрос 3. Можно ли перемножить матрицы А(3х4) и В(4х2)?
1. да;
2. нет;
3. только, если все элементы матрицы В=1;
4. иногда;
5. нет правильного ответа.
Вопрос 4. Можно ли перемножить матрицы А(2х3) и В(4х2)?
1. да;
2. нет;
3. всегда;
4. иногда;
5. нет правильного ответа.
Вопрос 5. Приведите пример единичной матрицы. Укажите ее порядок.
1.
2. или второго порядка;
3. или третьего порядка;
4. или третьего порядка;
5. нет правильного ответа.
Задание 5
Вопрос 1. Изменится ли квадратная матрица А(3х3), если ее умножить на единичную матрицу?
1. да;
2. она станет единичной;
3. она станет нулевой;
4. нет;
5. нет правильного ответа.
Вопрос. 2. Чему равен определитель единичной матрицы?
1. 0;
2. 1;
3. 2;
4. 3;
5. 18.
Вопрос 3. Что значит транспонировать матрицу?
1. обнулить;
2. элемент с номером ij поместить на место ji и наоборот;
3. умножить на матрицу Е;
4. элементы с номером ii положить равными нулю
5. элементы с номером ii положить равными 1.
Вопрос 4. Как обозначаются элементы транспонированной матрицы?
1. вij-1;
2.  вij;
3. в*ij;
4. 5 вij;
5. нет правильного ответа.
Вопрос 5. Чему равно произведение А•А-1?
1. 0;
2. Е;
3. А+А;
4. А*.
5. нет правильного ответа
Задание 6.
Вопрос 1. Можно ли найти обратную матрицу, для матрицы, имеющей =0?
1. можно;
2. нет;
3. всегда;
4. иногда;
5. нет правильного ответа.
Вопрос 2. Что такое матрица системы?
1. нулевая матица;
2. матрица Е;
3. матрица, состоящая из коэффициентов свободных членов;
4. нет правильного ответа;
5. матица, состоящая из коэффициентов левой части.
Вопрос 3. Что такое матичное уравнение?
1. равенство вида ах2+вх+с=0;
2. равенство вида А•Х=С, где А,Х,С – матрицы;
3. равенство вида у=кх+в;
4. равенство вида 2+18=2;
5. нет правильного ответа.
Вопрос 4. Можно ли решить систему уравнений матричным способом, если определитель матрицы системы равен нулю?
1. да;
2. нет;
3. всегда;
4. иногда;
5. нет правильного ответа.
Вопрос 5. Что такое определитель системы второго порядка?
1. ;
2. ;
3. ;
4. ;
5. нет правильного ответа.
Задание 7.
Вопрос 1. Как записать разложение по ортам вектора , соединяющего точки А(3; 5;7) и В(5;9;12)?
1. ;
2. ;
3. ;
4. ;
5.
Вопрос 2. Когда вектора и коллинеарны?
1. когда =0;
2. когда =0;
3. скалярное произведение этих векторов равно 0;
4. когда = ;
5. нет правильного ответа.
Вопрос 3. В каком случае вектора называются линейно независимыми?
1. Если они - коллинеарные;
2. если равенство =0 возможно лишь при 1= 2 =…=0;
3. возможно, если хоть один из коэффициентов 1,…к 0;
4. нулевые;
5. нет правильного ответа.
Вопрос 4. Какое выражение называется линейной комбинацией векторов?
1. в=0;
2. =
3. а=(с,d)
4. а-в=d
5. нет правильного ответа
Вопрос 5. Могут ли четыре вектора на плоскости быть линейно независимы?
1. да;
2. всегда;
3. иногда;
4. нет правильного ответа.
5. нет.
Задание 8
Вопрос 1. Могут ли четыре вектора в трехмерном пространстве быть линейно независимы?
1. да;
2. нет;
3. всегда;
4. иногда;
5. нет правильного ответа.
Вопрос 2. Являются ли векторы–орты компланарными?
1. нет;
2. да;
3. всегда;
4. иногда;
5. нет ответа.
Вопрос 3. Может ли векторное произведение векторов и лежать в плоскости, образованной этими векторами, если оно не равно нулю?
1. да;
2. всегда;
3. иногда;
4. нет правильного ответа.
5. нет.
Вопрос 4. Что изменится в векторном произведении, если изменить порядок перемножаемых векторов?
1. Порядок компонент (координат) вектора–произведения;
2. знаки компонент вектора-произведения;
3. модуль синуса угла между перемножаемыми векторами;
4. длина вектора-результата;
5. нет правильного ответа.
Вопрос 5. Что Вы можете сказать о координатах векторов и , если они коллинеарны?
1. они равны нулю;
2. их координаты пропорциональны;
3. они положительны;
4. они отрицательны;
5. нет правильного ответа.
Задание 9
Вопрос 1. Смешанное произведение это вектор или скаляр (то есть число)?
1. вектор;
2. скаляр;
3. матрица;
4. 0;
5. нет правильного ответа.
Вопрос 2. Скалярное произведение – это число или вектор?
1. число;
2. вектор;
3. вектор и число;
4. 0;
5. 1;
Вопрос 3. Векторное произведение – это число или вектор?
1. число;
2. вектор;
3. вектор и число;
4. 0;
5. 1;
Вопрос 4. Чему равен модуль (длина) векторного произведения и ?
1. площади параллелограмма, построенного на векторах, как на сторонах;
2. 0;
3. 1;
4. модуля вектора ;
5. 2.
Вопрос 5. Чему равен модуль смешанного произведения векторов ?
1. 0;
2. объему параллелепипеда, построенного на векторах ;
3. 1;
4. объему пирамиды, построенной на векторах ;
5. нет правильного ответа
Задание 10
Вопрос 1. Приведите уравнение прямой на плоскости с угловым коэффициентом?
1. х2 +у=0;
2. х2+у2=5;
3. у-у0=3(х-х0);
4.
5. у=кх+ в;
Вопрос 2. Верно ли, что уравнение второй степени задаёт прямую на плоскости ?
1. да;
2. нет;
3. всегда;
4. иногда;
5. нет правильного ответа.
Вопрос 3. Приведите уравнение пучка прямых, проходящих через точку (х0, у0).
1. у=кх+в;
2. у-у0 =к (х-х0);
3.
4. 3х=5у+2
5. нет правильного ответа
Вопрос 4. Приведите уравнение прямой, содержащее координаты двух точек, через которые она проходит.
1. ;
2. у=кх+в;
3. х2 +2у=0;
4. у=2х+3;
5. нет правильного ответа.
Вопрос 5.Приведите общее уравнение прямой на плоскости.
1. у=3х+2;
2. Ах+Ву+С=0;
3. у=2х+3;
4. х2+у2=5;
5. нет правильного ответа.
Задание 11
Вопрос 1. Приведите каноническое уравнение прямой на плоскости.
1. х=2;
2. , где (m,n) – направляющий вектор;
3. у=2х;
4. у=5;
5. нет правильного ответа.
Вопрос 2. Приведите общее уравнение плоскости в пространстве.
1. 2х2+3у+Z+5=0;
2. Ах+Ву+СZ+D=0;
3. Ах+Ву+С=0;
4. Z=0;
5. нет правильного ответа.
Вопрос 3. Приведите уравнение плоскости, проходящей через три заданные точки А(х1у1z1) А(х2у2z2) А(х3у3z3).
1. ; ответ 1
2. Ах+Ву+СZ+D=0;
3. Z=5;
4. х+у-z=0;
5. нет правильного ответа.
Вопрос 4. Приведите каноническое уравнение прямой, проходящей через точку М0(х0у0z0) и имеющей направляющий вектор L(Lx,Lу,Lz).
1. у=х –L;
2. ;
3. ;
4. х - Lx +y - Lу +z - Lz =0;
5. нет правильного ответа.
Вопрос 5. Являются ли плоскости 2х+3у+7Z+5=0 и 10х+15у+7Z+5=0 параллельными?
1. да;
2. нет;
3. иногда;
4. только при определенных значениях переменных;
5. нет правильного ответа.
Задание 12
Вопрос 1. Отметьте каноническое уравнение окружности.
1. у=кх+в;
2. (х-х0)2+(у-у0)2=R2;
3. у=5;
4. у=coust=C;
5. нет правильного ответа.
Вопрос 2. Выпишите каноническое уравнение эллипса.
1. у2+2х+у0=0;
2. (х-х0)(у-у0)=0;
3.
4. нет правильного ответа;
5.
Вопрос 3. Выпишите каноническое уравнение гиперболы.
1. ;
2. у=2х;
3. (у-у0)2= (х-х0) 2;
4. у=0;
5. нет правильного ответа
Вопрос 4. Выпишите каноническое уравнение параболы с директрисой, перпендикулярной Ох.
1. у=3х+5;
2. (у-у0)2=2p(х-х0);
3. у=5;
4. нет правильного ответа
5. все ответы верны
Вопрос 5. Какие прямые являются асимптотами гиперболы?
1. у=Z;
2. ;
3. у=5;
4. х=2;
5. нет правильного ответа.
Задание 13
Вопрос 1. Что называется функцией?
1. число;
2. правило, по которому каждому значению аргумента х в соответствует одно и только одно значение функции у;
3. вектор;
4. матрица;
5. нет правильного ответа.
Вопрос 2. В каком случае можно определить обратную функцию?
1. когда каждый элемент имеет единственный прообраз;
2. когда функция постоянна;
3. когда функция не определена;
4. когда функция многозначна;
5. нет правильного ответа.
Вопрос 3. Какая функция называется ограниченной?
1. обратная;
2. функция f(x) называется ограниченной, если m f(x) M;
3. сложная;
4. функция f(x) называется ограниченной, если f(x)›0;
5. функция f(x) называется ограниченной, если f(x) 0;
Вопрос 4. Какая точка называется предельной точкой множества А?
1. нулевая;
2. т.х0 называется предельной точкой множества А, если в любой окрестности точки х0 содержатся точки множества А, отличающиеся от х0;
3. не принадлежащая множеству А;
4. нет правильного ответа;
5. лежащая на границе множества.
Вопрос 5. Может ли существовать предел в точке в том случае, если односторонние пределы не равны?
1. да;
2. иногда;
3. нет;
4. всегда;
5. нет правильного ответа.
Задание 14
Вопрос 1. Является ли функция бесконечно малой при ?
1. да;
2. нет;
3. иногда;
4. всегда;
5. нет правильного ответа.
Вопрос 2. Является ли функция бесконечно большой при ?
1. да;
2. нет;
3. иногда;
4. если х=0;
5. нет правильного ответа.
Вопрос 3. Является ли функция у=sin x бесконечно большой при ?
1. да;
2. нет;
3. иногда;
4. всегда;
5. нет правильного ответа.
Вопрос 4. Является ли функция у=cos x бесконечно большой при ?
1. да;
2. нет;
3. иногда;
4. всегда;
5. нет правильного ответа.
Вопрос 5. Является ли функция у=tg x бесконечно большой в т. х0=0?
1. да;
2. иногда;
3. всегда;
4. нет;
5. нет правильного ответа.
Задание 15
Вопрос 1. Является ли произведение бесконечно малой функции на функцию ограниченную, бесконечно малой функцией?
1. нет;
2. да;
3. иногда;
4. не всегда;
5. нет правильного ответа.
Вопрос 2. В каком случае бесконечно малые (х) и (х) называются бесконечно малыми одного порядка в точке х0?
1. если они равны;
2. если ;
3. если ;
4. если их пределы равны 0;
5. нет правильного ответа.
Вопрос 3. Сколько видов основных элементарных функций мы изучили?
1. 5;
2. 1;
3. 0;
4. 2;
5. 3.
Вопрос 4. Чему равен предел константы С?
1. 0;
2. е;
3. 1;
4. ;
5. с.
Вопрос 5. Является ли степенная функция непрерывной?
1. нет;
2. да;
3. иногда;
4. при х >1;
5. нет правильного ответа.
Задание 16
Вопрос 1. Приведите формулу первого замечательного предела.
1.
2.
3. ;
4. уґ=кх+в;
5. нет правильного ответа.
Вопрос 2. Приведите формулу второго замечательного предела.
1. 0;
2.
3.
4.
5.
Вопрос 3. Какие функции называются непрерывными?
1. бесконечно малые;
2. удовлетворяющие условиям: а) f определима в т. х0 в) существует и равен f(x0);
3. бесконечно большие;
4. степенные;
5. тригонометрические.
Вопрос 4. Если f(x0+0)=f(x0-0)=L, но f(x0) L, какой разрыв имеет функция?
1. нет правильного ответа;
2. 2-го рода;
3. устранимый;
4. неустранимый;
5. функция непрерывна.
Вопрос 5. Какой разрыв имеет f(x) в т. х0, если f(x0-0) f(x0+0), и не известно: конечны ли эти пределы?
1. устранимый;
2. неустранимый;
3. функция непрерывна;
4. 1-го рода;
5. 2-го рода.
 
 
Задание 17
Вопрос 1. Сформулируйте свойство непрерывности сложной функции.
1. сложная функция непрерывна всегда;
2. если функция u=g(х) непрерывна в точке х0 и функция у=f(u) непрерывна в точке u=g(х0), то сложная функция у=f(g(x)) непрерывна в точке х0.
3. сложная функция, являющаяся композицией непрерывных функций не является непрерывной;
4. сложная функция разрывна;
5. сложная функция является композицией непрерывных функций и имеет устранимый разрыв.
Вопрос 2. Является ли функция у=(1-х2)3 непрерывной?
1. нет;
2. иногда;
3. при х >1;
4. да;
5. нет правильного ответа.
Вопрос3. Что такое производная функции?
1. Предел значения этой функции;
2.
3. 0;
4. 1;
5. е
Вопрос 4. Какая функция является дифференцируемой в точке х=4 ?
1.
2. ln(x-4);
3. имеющая производную в точке х=4 ;
4. непрерывная в точке х=4;
5. нет правильного ответа
Вопрос 5. Какая функция называется дифференцируемой на интервале (а,в)?
1. разрывная в каждой точке интервала;
2. дифференцируемая в каждой точке этого интервала;
3. постоянная;
4. возрастающая;
5. убывающая.
Задание 18
Вопрос 1. Чему равна производная константы у=с?
1. 1;
2. 0;
3. е;
4. ;
5. нет правильного ответа.
Вопрос 2. Чему равна производная функции у=х5?
1. 0;
2. 1;
3. е;
4. 5х4;
5. нет правильного ответа.
Вопрос 3. Чему равна производная у=ех?
1. 0;
2. ех;
3. е;
4. 1;
5. нет правильного ответа.
Вопрос 4. Чему равна производная у=ln x?
1. ;
2. 0;
3. е;
4. 1;
5. нет правильного ответа.
Вопрос 5. Чему равна производная у=sin x?
1. 0;
2. cos x;
3. е;
4. 1;
5. нет правильного ответа.
Задание 19
Вопрос 1. Может ли непрерывная функция быть дифференцируемой?
1. нет;
2. да;
3. только в точке х= ;
4. только в точке х=0;
5. нет правильного ответа.
Вопрос 2. Всегда ли непрерывная функция является дифференцируемой?
1. всегда;
2. никогда;
3. не всегда;
4. в т. х=0;
5. в т. х= .
Вопрос 3. Может ли дифференцируемая функция быть непрерывной?
1. нет;
2. да;
3. никогда;
4. в т. х=0;
5. в т. х= .
Вопрос 4. Всегда ли дифференцируемая функция является непрерывной?
1. не всегда;
2. никогда;
3. нет правильного ответа;
4. в т. х=0;
5. всегда.
Вопрос 5. Найти вторую производную от функции у=sin x.
1. cos x;
2. -sin x;
3. 0;
4. 1;
5. tg x.
Задание 20
Вопрос 1. Как называется главная, линейная часть приращения функции?
1. производная;
2. дифференциал (dу);
3. функция;
4. бесконечно малая;
5. бесконечно большая.
Вопрос 2. Сформулируйте правило Лопиталя.
1. ,если предел правой части существует;
2. ;
3. ;
4. нет правильного ответа;
5.
. Вопрос 3. Какие виды неопределенностей можно раскрыть при помощи правила Лопиталя?
1. {0};
2. ;
3. c x 0;
4. c x ;
5. x .
Вопрос 4. Является ли условие у=0 в точке, не являющейся граничной точкой области определения дифференцируемой функции у, необходимым условием существования экстремума в этой точке?
1. нет;
2. да;
3. не всегда;
4. иногда;
5. нет правильного ответа.
Вопрос 5. Является ли условие у=0 в т. х=а достаточным условием существования экстремума?
1. да;
2. нет;
3. не всегда;
4. иногда;
5. нет правильного ответа.
Задание 21
Вопрос 1. Какая функция называется функцией двух переменных?
1. f(x);
2. n=f(x,у,z);
3. нет правильного ответа;
4. z=f(x,у);
5. f(x)=const=c.
Вопрос 2. Вычислить предел функции .
1. 0;
2. 29;
3. 1;
4. 5;
5. 2.
Вопрос 3. Вычислить предел функции
1. 0;
2. 1;
3. 16;
4. 18;
5. 20.
Вопрос 4. Какие линии называются линиями разрыва?
1. прямые;
2. состоящие из точек разрыва;
3. параболы;
4. эллипсы;
5. нет правильного ответа.
Вопрос 5. Найти первую производную по у от функции z=3x+2у.
1. 1;
2. 2;
3. 0;
4. 5;
5. нет правильного ответа.

Наверх

www.webmoney.ru Яндекс цитирования Рейтинг@Mail.ru Студенческий Маяк © 2010 - 2012   ИП Каминская О.В. ОГРНИП 310774602801230
При использовании материалов активная ссылка на StudMayak.ru обязательна.