Подпишись и читай
самые интересные
статьи первым!

Механическая работа. Мощность

Нам осталось рассмотреть работу третьей механической силы - силы трения скольжения. В земных условиях сила трения в той пли иной мере проявляется при всех движениях тел.

От силы тяжести и силы упругости сила трения скольжения отличается тем, что она от координат не зависит и возникает всегда при относительном движении соприкасающихся тел.

Рассмотрим работу силы трения при движении тела относительно неподвижной поверхности, с которой оно соприкасается. В этсм случае сила трения направлена против движения тела. Ясно, что по отношению к направлению перемещения такого тела сила трения не может быть направлена под каким-нибудь другим углем, кроме угла 180°. Поэтому работа силы трения отрицательна. Вычислять работу силы трения нужно по формуле

где - сила трения, - длина пути, на протяжении которого действует сила трения

Когда на тело действует сила тяжести или сила упругости, может двигаться и в направлении силы, и против направления силы. В первом случае работа силы положительна, во втором - отрицательна. При движении тела «туда и обратно» полная работа равна нулю.

О работе силы трения этого сказать нельзя. Работа силы трения отрицательна и при движении «туда», движении обратно». Поэтому работа силы трения после возвращения тела в исходную точку (при движении по замкнутому пути) неравна нулю.

Задача. Вычислите работу силы трения при торможении поезда массой 1200 т до полной остановки, если скорость поезда в момент выключения двигателя была 72 км/ч. Решение. Воспользуемся формулой

Здесь - масса поезда, равная кг, - конечная скорость поезда, равная нулю, и - его начальная скорость, равная 72 км/ч = 20 м/сек. Подставив эти значения, получим:

Упражнение 51

1. На тело действует сила трения. Может ли работа этой силы равняться нулю?

2. Если тело, на которое действует сила трения, пройдя некоторую траекторию, вернется в исходную точку, будет ли работа сипы трения равна нулю?

3. Как изменяется кинетическая энергия тела при работе силы трения?

4. Сани массой 60 кг, скатившись с горы, проехали по горизонтальному участку дороги 20 м. Найдите работу силы трения на этом участке, если коэффициент трения полозьев саней о снег 0,02.

5. К точильному камню радиусом 20 см прижимают затачиваемую деталь с силой 20 н. Определите, какая работа совершается двигателем за 2 мин, если точильный камень делает 180 об мин, а коэффициент трения детали о камень равен 0,3.

6. Шофер автомобиля выключает двигатель и начинает тормозить в 20 м от светофора. Считая силу трения равной 4 000 к, найдите, при какой наибольшей скорости автомобиля он успеет остановиться перед светофором, если масса автомобиля равна 1,6 т?

Инструкция

Случай 1. Формула для скольжения: Fтр = мN, где м – коэффициент трения скольжения, N – сила реакции опоры, Н. Для тела, скользящего по горизонтальной плоскости, N = G = mg, где G - вес тела, Н; m – масса тела, кг; g – ускорение свободного падения, м/с2. Значения безразмерного коэффициента м для данной пары материалов даны в справочной . Зная массу тела и пару материалов. скользящих друг относительно друга, найдите силу трения.

Случай 2. Рассмотрите тело, скользящее по горизонтальной поверхности и двигающееся равноускоренно. На него действуют четыре силы: сила, приводящее тело в движение, сила тяжести, сила реакции опоры, сила трения скольжения. Так как поверхность горизонтальная, сила реакции опоры и сила тяжести направлены вдоль одной прямой и уравновешивают друг друга. Перемещение описывает уравнение: Fдв - Fтр = ma; где Fдв – модуль силы, приводящей тело в движение, Н; Fтр – модуль силы трения, Н; m – масса тела, кг; a – ускорение, м/с2. Зная значения массы, ускорения тела и силы, воздействующей на него, найдите силу трения. Если эти значения не заданы прямо, посмотрите, есть ли в условии данные, из которых можно найти эти величины.

Пример задачи 1: на брусок массой 5 кг, лежащий на поверхности, воздействуют силой 10 Н. В результате брусок двигается равноускоренно и проходит 10 за 10 . Найдите силу трения скольжения.

Уравнение для движения бруска:Fдв - Fтр = ma. Путь тела для равноускоренного движения задается равенством: S = 1/2at^2. Отсюда вы можете определить ускорение: a = 2S/t^2. Подставьте данные условия: а = 2*10/10^2 = 0,2 м/с2. Теперь найдите равнодействующую двух сил: ma = 5*0,2 = 1 Н. Вычислите силу трения: Fтр = 10-1 = 9 Н.

Случай 3. Если тело на горизонтальной поверхности находится в состоянии покоя, либо двигается равномерно, по второму закону Ньютона силы находятся в равновесии: Fтр = Fдв.

Пример задачи 2: бруску массой 1 кг, находящемуся на ровной поверхности, сообщили , в результате которого он проехал 10 метров за 5 секунд и остановилось. Определите силу трения скольжения.

Как и в первом примере, на скольжение бруска влияют сила движения и сила трения. В результате этого воздействия тело останавливается, т.е. приходит равновесие. Уравнение движения бруска: Fтр = Fдв. Или: N*м = ma. Брусок скользит равноускоренно. Рассчитайте его ускорение подобно задаче 1: a = 2S/t^2. Подставьте значения величин из условия: а = 2*10/5^2 = 0,8 м/с2. Теперь найдите силу трения: Fтр = ma = 0,8*1 = 0,8 Н.

Случай 4. На тело, самопроизвольно скользящее по наклонной плоскости, действуют три силы: сила тяжести (G), сила реакции опоры (N) и сила трения (Fтр). Сила тяжести может быть записана в таком виде: G = mg, Н, где m – масса тела, кг; g – ускорение свободного падения, м/с2. Поскольку эти силы направлены не вдоль одной прямой, запишите уравнение движения в векторном виде.

Сложив по правилу параллелограмма силы N и mg, вы получите результирующую силу F’. Из рисунка можно сделать выводы: N = mg*cosα; F’ = mg*sinα. Где α – угол наклона плоскости. Силу трения можно записать формулой: Fтр = м*N = м*mg*cosα. Уравнение для движения принимает вид: F’-Fтр = ma. Или: Fтр = mg*sinα-ma.

Случай 5. Если же к телу приложена дополнительная сила F, направленная вдоль наклонной плоскости, то сила трения будет выражаться: Fтр = mg*sinα+F-ma, если направление движения и силы F совпадают. Или: Fтр = mg*sinα-F-ma, если сила F противодействует движению.

Пример задачи 3: брусок массой 1 кг соскользнул с вершины наклонной плоскости за 5 секунд, пройдя путь 10 метров. Определите силу трения, если угол наклона плоскости 45о. Рассмотрите также случай, когда на брусок воздействовала дополнительная сила 2 Н, приложенная вдоль угла наклона по направлению движения.

Найдите ускорение тела аналогично примерам 1 и 2: а = 2*10/5^2 = 0,8 м/с2. Вычислите силу трения в первом случае: Fтр = 1*9,8*sin(45о)-1*0,8 = 7,53 Н. Определите силу трения во втором случае: Fтр = 1*9,8*sin(45о)+2-1*0,8= 9,53 Н.

Случай 6. Тело двигается по наклонной поверхности равномерно. Значит, по второму закону Ньютона система находится в равновесии. Если скольжение самопроизвольное, движение тела подчиняется уравнению: mg*sinα = Fтр.

Если же к телу приложена дополнительная сила (F), препятствующая равноускоренному перемещению, выражение для движения имеет вид: mg*sinα–Fтр-F = 0. Отсюда найдите силу трения: Fтр = mg*sinα-F.

Источники:

  • скольжение формула

Коэффициент трения – это совокупность характеристик двух тел, которые соприкасаются друг с другом. Существует несколько видов трения: трение покоя, трение скольжения и трение качения. Трение покоя представляет собой трение тело, которое находилось в покое, и было приведено в движение. Трение скольжения происходит при движении тела, данное трение меньше трения покоя. А трение качения происходит, когда тело катиться по поверхности. Обозначается трение в зависимости от вида, следующим образом: μск - трение скольжения, μо- трение покоя, μкач – трение качения.

Инструкция

При определении коэффициента трения в ходе эксперимента, тело размещается на плоскости под наклоном и вычисляется угол наклона. При этом учитывать, что при определении коэффициента трения покоя заданное тело двигаться, а при определении коэффициента трения скольжения движется со скоростью, которая постоянна.

Коэффициент трения можно также вычислить в ходе эксперимента. Необходимо поместить объект на наклонную плоскость и вычислить угол наклона. Таким образом, коэффициент трения определяется по формуле: μ=tg(α), где μ - сила трения, α – угол наклона плоскости.

Видео по теме

При относительном движении двух тел между ними возникает трение. Оно также может возникнуть при движении в газообразной или жидкой среде. Трение может как мешать, так и способствовать нормальному движению. В результате этого явления на взаимодействующие тела действует сила трения .

Инструкция

Наиболее общий случай рассматривает силу , когда одно из тел закреплено и покоится, а другое скользит по его поверхности. Со стороны тела, по которому скользит движущееся тело, на последнее действует сила реакции опоры, направленная перпендикулярно плоскости скольжения. Эта сила буквой N.Тело может также и покоится относительно закрепленного тела. Тогда сила трения, действующая на него Fтр

В случае движения тела относительно поверхности закрепленного тела сила трения скольжения становится равна произведения коэффициента трения на силу реакции опоры: Fтр = ?N.

Пусть теперь на тело действует постоянная сила F>Fтр = ?N, параллельная поверхности соприкасающихся тел. При скольжении тела, результирующая составляющая силы в горизонтальном направлении будет равна F-Fтр. Тогда по второму закону Ньютона, ускорение тела будет связано с результирующей силой по формуле: a = (F-Fтр)/m. Отсюда, Fтр = F-ma. Ускорение тела можно найти из кинематических соображений.

Часто рассматриваемый частный случай силы трения проявляется при соскальзывании тела с закрепленной наклонной плоскости. Пусть? - угол наклона плоскости и пусть тело соскальзывает равномерно, то есть без ускорения. Тогда уравнения движения тела будут выглядеть так: N = mg*cos?, mg*sin? = Fтр = ?N. Тогда из первого уравнения движения силу трения можно выразить как Fтр = ?mg*cos?.Если тело движется по наклонной плоскости с ускорением a, то второе уравнение движение будет иметь вид: mg*sin?-Fтр = ma. Тогда Fтр = mg*sin?-ma.

Видео по теме

Если сила, направленная параллельно поверхности, на которой стоит тело, превышает силу трения покоя, то начнется движение. Оно будет продолжаться до тех пор, пока движущая сила будет превышать силу трения скольжения, зависящую от коэффициента трения. Рассчитать этот коэффициент можно самостоятельно.

Вам понадобится

  • Динамометр, весы, транспортир или угломер

Инструкция

Найдите массу тела в килограммах и установите его на ровную поверхность. Присоедините к нему динамометр, и начинайте двигать тело. Делайте это таким образом, чтобы показатели динамометра стабилизировались, поддерживая постоянную скорость . В этом случае сила тяги, измеренная динамометром, будет равна с одной стороны силе тяги, которую показывает динамометр, а с другой стороны силе , умноженной на скольжения.

Сделанные измерения позволят найти данный коэффициент из уравнения. Для этого поделите силу тяги на массу тела и число 9,81 (ускорение свободного падения) μ=F/(m g). Полученный коэффициент будет один и тот же для всех поверхностей такого же типа, как и те на которых производилось измерение. Например, если тело из двигалось по деревянной доске, то этот результат будет справедлив для всех деревянных тел, двигающихся скольжением по дереву, с учетом качества его обработки (если поверхности шершавые, значение коэффициента трения скольжения измениться).

Можно измерить коэффициент трения скольжения и другим способом. Для этого установите тело на плоскости, которая может менять свой угол относительно горизонта. Это может быть обыкновенная дощечка. Затем начинайте аккуратно поднимать ее за один край. В тот момент, когда тело придет в движение, скатываясь в плоскости как сани с горки, найдите угол ее уклона относительно горизонта. Важно, чтобы тело при этом не двигалось с ускорением. В этом случае, измеренный угол будет предельно малым, при котором тело начнет двигаться под действием силы тяжести. Коэффициент трения скольжения будет равен тангенсу этого угла μ=tg(α).

Мякишев Г.Я., Кондрашева Л., Крюков С. Работа сил трения //Квант. - 1991. - № 5. - С. 37-39.

По специальной договоренности с редколлегией и редакцией журнала "Квант"

Сила трения, как и любая другая сила, совершает работу и соответственно изменяет кинетическую энергию тела при условии, если точка приложения силы перемещается в выбранной системе отсчета. Однако сила трения существенно отличается от других, так называемых консервативных, сил (тяготения и упругости), так как ее работа зависит от формы траектории. Вот почему работу сил трения ни при каких обстоятельствах нельзя представить в виде изменения потенциальной энергии системы. Кроме того, дополнительные сложности при вычислении работы создает специфика силы трения покоя. Здесь существует ряд стереотипов физического мышления, которые хотя и лишены смысла, но очень устойчивы.

Мы рассмотрим несколько вопросов, связанных с не вполне правильным пониманием роли силы трения в изменении энергии системы тел.

О силе трения скольжения

Нередко говорят, что сила трения скольжения всегда совершает отрицательную работу и это приводит к увеличению внутренней (тепловой) энергии системы.

Такое утверждение нуждается в важном уточнении - оно справедливо только в том случае, если речь идет не о работе одной отдельно взятой силы трения скольжения, а о суммарной работе всех таких сил, действующих в системе. Дело в том, что работа любой силы зависит от выбора системы отсчета и может быть отрицательной в одной системе, но положительной в другой. Суммарная же работа всех сил трения, действующих в системе, не зависит от выбора системы отсчета и всегда отрицательна. Вот конкретный пример.

Положим кирпич на движущуюся тележку так, чтобы он начал по ней скользить (рис. 1). В системе отсчета, связанной с землей, сила трения F 1 , действующая на кирпич до, прекращения скольжения, совершает положительную работу A 1 . Одновременно сила трения F 2 , действующая на тележку (и равная по модулю первой силе), совершает отрицательную работу A 2 , по модулю большую, чем работа A 1 , так как путь тележки s больше пути кирпича s - l (l - путь кирпича относительно тележки). Таким образом, получаем

\(~A_1 = \mu mg(s - l), A_2 = -\mu mgs\) ,

и полная работа сил трения

\(~A_{tr} = A_1 + A_2 = -\mu mgl < 0\) .

Поэтому кинетическая энергия системы убывает (переходит в тепло):

\(~\Delta E_k = -\mu mgl\) .

Этот вывод имеет общее значение. Действительно, работа двух сил (не только сил трения), осуществляющих взаимодействие между телами, не зависит от выбора системы отсчета (докажите это самостоятельно). Всегда можно перейти к системе отсчета, относительно которой одно из тел покоится. В ней работа силы трения, действующей на движущееся тело, всегда отрицательна, так как сила трения направлена против относительной скорости. Но она отрицательна и в любой другой системе отсчета. Следовательно, всегда, при любом количестве тел в системе, A tr < 0. Эта работа и уменьшает механическую энергию системы.

О силе трения покоя

При действии между соприкасающимися телами силы трения покоя ни механическая, ни внутренняя (тепловая) энергия этих тел не изменяется. Значит ли это, что работа силы трения покоя равна нулю? Как и в первом случае, такое утверждение правильно только по отношению к полной работе сил трения покоя над всеми взаимодействующими телами. Одна же отдельно взятая сила трения покоя может совершать работу, причем как отрицательную, так и положительную.

Рассмотрим, например, книгу, лежащую на столе в набирающем скорость поезде. Именно сила трения покоя сообщает книге такую же скорость, как у поезда, т. е. увеличивает ее кинетическую энергию, совершая определенную работу при этом. Другое дело, что такая же по модулю, но противоположная по направлению сила действует со стороны книги на стол, а значит, и на поезд в целом. Эта сила совершает точно такую же работу, но только отрицательную. В результате получается, что полная работа двух сил трения покоя равна нулю, и механическая энергия системы тел не меняется.

О движении автомобиля без проскальзывания колес

Самое устойчивое заблуждение связано именно с этим вопросом.

Пусть автомобиль вначале покоится, а затем начинает разгоняться (рис. 2). Единственной внешней силой, сообщающей автомобилю ускорение, является сила трения покоя F tr действующая на ведущие колеса (мы пренебрегаем силой сопротивления воздуха и силой трения качения). Согласно теореме о движении центра масс, импульс силы трения равен изменению импульса автомобиля:

\(~F_{tr} \Delta t = \Delta(M \upsilon_c) = M \upsilon_c\) ,

если скорость центра масс в начале движения равнялась нулю, а в конце υ c . Приобретая импульс, т. е. увеличивая свою скорость, автомобиль одновременно получает и определенную порцию кинетической энергии. А поскольку импульс сообщается силой трения, естественно считать, что и увеличение кинетической энергии определяется работой этой же силы. Вот это-то утверждение оказывается совершенно неверным. Сила трения ускоряет автомобиль, но работы при этом не совершает. Как же так?

Вообще говоря, ничего парадоксального в этой ситуации нет. В качестве примера достаточно рассмотреть совсем простую модель - гладкий кубик с прикрепленной сбоку пружинкой (рис. 3). Кубик, придвигают к стене, сжимая пружинку, а затем отпускают. «Отталкиваясь» от стены, наша система (кубик с пружинкой) приобретает определенные импульс и кинетическую энергию. Единственной внешней силой, действующей по горизонтали на систему, является, очевидно, сила реакции стены F p . Именно она и сообщает системе ускорение. Однако никакой работы при этом, конечно, не совершается - ведь точка приложения этой силы неподвижна (в системе координат, связанной с землей), хотя сила действует некоторое конечное время Δt .

Аналогичная ситуация возникает и при разгоне автомобиля без проскальзывания. Точка приложения силы трения, действующей на ведущее колесо автомобиля, т. е. точка соприкосновения колеса с дорогой, в любой момент покоится относительно дороги (в системе отсчета, связанной с дорогой). При движении автомобиля она исчезает в одной точке и сразу же появляется в соседней.

Не противоречит ли сказанное закону сохранения механической энергии? Конечно же, нет. В нашем случае с автомобилем изменение кинетической энергии системы происходит за счет ее внутренней энергии, выделяющейся при сгорании топлива.

Для простоты рассмотрим чисто механическую систему: игрушечный автомобиль с пружинным заводом. Двигатель такого автомобиля использует не внутреннюю энергию топлива, а потенциальную энергию сжатой пружины. Вначале пружина заведена, и ее потенциальная энергия E p1 отлична от нуля. Если двигатель игрушки - просто растянутая пружина, то \(~E_{p1} = \frac{k (\Delta l)^2}{2}\). Кинетическая энергия равна нулю, и полная начальная энергия автомобиля E 1 = E p1 . В конечном состоянии, когда деформация пружины исчезнет, потенциальная энергия равна нулю, а кинетическая энергия \(~E_{k2} = \frac{M \upsilon_c^2}{2}\). Полная энергия E 2 = E k2 . Согласно закону сохранения энергии (трением мы пренебрегаем),

\(~\frac{M \upsilon_c^2}{2} = \frac{k (\Delta l)^2}{2}\) .

В случае реального автомобиля

\(~\frac{M \upsilon_c^2}{2} = \Delta U\) ,

где ΔU - энергия, полученная при сгорании топлива.

Если колеса автомобиля проскальзывают, то A tr <0, так как точка соприкосновения колес с дорогой движется против направления силы трения. Следовательно,

\(~\frac{M \upsilon_c^2}{2} = \frac{k (\Delta l)^2}{2} + A_{tr}\) .

Видно, что кинетическая энергия автомобиля в конечном состоянии оказывается меньше, чем в отсутствие проскальзывания.

Допустим, что тело массы передвигают по горизонтальной поверхности стола из точки в точку В (рис. 5.26). При этом на тело со стороны стола действует сила трения. Коэффициент трения равен Один раз тело перемещается по траектории другой - по траектории Длина равна а длина Рассчитаем работу, которую совершит сила трения при этих движениях.

Как известно, сила трения Сила нормального давления так как поверхность стола горизонтальна. Поэтому сила трения в обоих движениях будет постоянна по модулю, равна и направлена во всех точках траектории в сторону, противоположную скорости.

Постоянство модуля силы трения позволяет написать выражение для работы силы трения сразу для всего расстояния, пройденного телом. При движении по траектории совершается работа

при движении по траектории

Знак минус появился потому, что угол между направлением силы и направлением перемещения равен 180°. Расстояние не равно поэтому работа не равна При переходе из точки А в точку В по разным траекториям сила трения совершает разную работу.

Таким образом, в отличие от сил всемирного тяготения и упругости, работа силы трения зависит от формы траектории, по которой двигалось тело.

Зная только начальное и конечное положения тела и не имея сведений о траектории движения, мы уже не можем заранее сказать, какая работа будет совершена силой трения. В этом состоит одно из существенных отличий силы трения от сил всемирного тяготения и упругости.

Это свойство силы трения может быть выражено и по-другому. Допустим, что тело было перемещено из по траектории а затем было возвращено обратно в по траектории . В результате этих двух движений образуется замкнутая траектория На всех участках этой траектории работа силы трения будет отрицательна. Полная работа, совершенная за все время этого движения, равна

работа силы трения на замкнутой траектории не равна нулю.

Отметим еще одну особенность силы трения. При перемещении тела из была совершена работа против силы трения. Если в точке В тело освободить от внешних воздействий, то сила трения не вызовет никакого обратного движения тела. Она не сможет вернуть ту работу, которая была совершена на преодоление ее действия. В результате работы силы трения происходит только уничтожение, разрушение механического движения тела и превращение этого движения в тепловое, хаотическое движение атомов и молекул. Работа силы трения показывает величину того запаса механического движения, который необратимо превращается во время действия силы трения в другую форму движения - в тепловое движение.

Таким образом, сила трения обладает рядом таких свойств, которые ставят ее в особое положение. В отличие от сил тяжести и упругости сила трения по модулю и направлению зависит от скорости относительного движения тел; работа силы трения зависит от формы траектории, по которой движутся тела; работа силы трения необратимо превращает механическое движение тел в тепловое движение атомов и молекул.

Все это при решении практических задач заставляет рассматривать действие сил упругости и трения отдельно. Вследствие этого силу трения часто в расчетах рассматривают как внешнюю по отношению к любой механической системе тел.

Если сила перемещает тело на некоторое расстояние, то она совершает над телом работу.

Работа А есть произведение силы F на перемещение s .

Работа - величина скалярная.

Единица СИ работы

Работа постоянной силы

Если сила F постоянна во времени и ее направление совпадает с направлением перемещения тела, то работа W находится по формуле:

Здесь:
W(Е) - совершенная работа (Джоуль)
F - постоянная сила, совпадающая по направлению с перемещенем (Ньютон)
s - перемещение тела (метр)

Работа постоянной силы, направленной под углом к перемещению

Если сила и перемещение составляют между собой угол ? < 90?, то перемещение следует умножать на составляющую силы в направлении перемещения (или силу умножать на составляющую перемещения в направлении действия силы).

Здесь:
? - угол между вектором силы и вектором перемещения

Работа переменной силы, направленной под углом к перемещению, формула

Если сила не постоянна по величине и является функцией перемещения F =F(s) , и направлена под углом ? к перемещению, то работа есть интеграл от силы по перемещению.

Площадь под кривой на графике зависимости F от s равна работе, произведенной данной силой

Работа против сил трения

Если тело движется с постоянной скоростью (равномерно) против сил трения, то над ним совершается работа
W = Fs . При этом сила F совпадает по направлению с перемещением s и равна по величине силе трения Fтр . Работа против сил трения превращается в тепловую энергию.

Здесь:
A - работа против сил трения (Джоуль)
Fтр - сила трения (Ньютон)
? - коэффициент трения
Fнорм - сила нормального давления (Ньютон)
s - перемещение (метр)

Работа силы трения на наклонной плоскости, формула

При движении тела вверх по наклонной плоскости совершается работа против силы тяжести и силы трения. В этом случае сила, действующая в направлении перемещения, складывается из скатывающей силы Fск и силы трения Fтр . В соответствии с формулой (1)

Работа в гравитационном поле

Если тело перемещается в гравитационном поле на значительное расстояние, то совершаемую против сил гравитационного притяжения работу (например, работу для вывода ракеты в космос) нельзя вычислить по формуле A =mg ·h , потому, что сила тяжести G обратно пропорциональна расстоянию между центрами масс.

Работа, совершаемая при перемещении тела вдоль радиуса в гравитационном поле, определяется как интеграл

См. Таблицу интегралов

Здесь:
А - работа против гравитационной силы (Джоуль)
m1 - масса первого тела (кг)
m2 - масса второго тела (кг)
r - расстояние между центрами масс тел (метр)
r1 - начальное расстояние между центрами масс тел (метр)
r2 - конечное расстояние между центрами масс тел (метр)
G - гравитационная постоянная 6.67 · 10-11 (м3/(кг · сек2))

Величина работы A не зависит от формы пути от точки r1 к r2 , так как в формулу входят только радиальные составляющие dr перемещения, совпадающие с направлением силы притяжения.

формула (3) справедлива в случае любых небесных тел.

Работа затрачиваемая на деформацию

Определение:Работа, затрачиваемая на деформацию упругих тел, также накапливается в этих телах в виде потенциальной энергии.

Мощность

Мощностью P называется отношение произвольной работы А к времени t , в течение которого совершается работа.

Единица СИ мощности:

Средняя мощность

Если:
P - Средняя мощность (Ватт)
А(W) - Работа (Джоуль)
t - Время затраченное на совершение работы (секунд)
то

Примечание: Если работа пропорциональна времени, W ~t , то мощность постоянна.

Коэффициент полезного действия, КПД

Каждая машина потребляет большую мощность, чем отдает, поскольку в ней происходят потери мощности (за счет трения, сопротивления воздуха, нагревания и т.д.)

Коэффициент полезного действия представляет собой отношение полезной работы к ззатраченой работе.

Если:
? - Коэффициент полезного действия, КПД
Аполез - Полезная работа, т.е. полезная или эффективная мощность, равная подведенной мощности минус мощность потерь,
Азатр - Затраченая работа, называемая также номинальной, приводной или индикаторной мощностью

Общий коэффициент полезного действия

При многократном превращении или передаче энергии общий коэффициент полезного действия равен произведению КПД на всех ступенях преобразования энергии:

Включайся в дискуссию
Читайте также
Теорема о прямой, перпендикулярной к плоскости Теорема о прямой перпендикулярной данной
Механическая работа. Мощность. Kvant. Работа сил трения Модуль работы силы трения
Презентация на тему: